If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-17=83
We move all terms to the left:
7x^2-17-(83)=0
We add all the numbers together, and all the variables
7x^2-100=0
a = 7; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·7·(-100)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*7}=\frac{0-20\sqrt{7}}{14} =-\frac{20\sqrt{7}}{14} =-\frac{10\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*7}=\frac{0+20\sqrt{7}}{14} =\frac{20\sqrt{7}}{14} =\frac{10\sqrt{7}}{7} $
| y-1/y+1=(y+1)/(3y-1) | | y-1/y+1=y+1/(3y-1) | | A=1/2x9x7 | | y-1/y+1=y+1/3y-1 | | 5=9=x | | 5n−7(n+3)+2n=-25 | | (y-1)/(y+1)=(y+1)(3y-1) | | 4v=5-2v | | 20-4p=6-p | | x+(-3x-13)+9=0 | | (y-1)/(y+1)=12 | | (y-1)=12 | | -5n=-3n-8(6+5n) | | 3w/4w+3=3 | | 2w/3w=3w/(4w+3) | | 0.6(10x-17)=4.2(0.2x+5) | | (6x-2)=78 | | -4x+5x=-100 | | 16+2x=7+5x | | 9=9h | | (3x+5)+(4x)=8x-14 | | 3w/4w+3=666 | | 3w/4w+3=1 | | -x/5+x/4=-5 | | 3w/4w+3=300 | | 1/4(20-4p)=6-p | | -5x-7x-100=140 | | Y=23-4x5 | | 10^b=1,000 | | (y+1)(3y-1)=-10 | | 63+(x+13)=3x | | 7x+39=-10 |